Derivations of Orthosympectic Lie Superalgebras
نویسنده
چکیده
In this paper we describe the derivations of orthosymplectic Lie superalgebras over a superring. In particular, we derive sufficient conditions under which the derivations can be expressed as a semidirect product of inner and outer derivations. We then present some examples for which these conditions hold.
منابع مشابه
On Δ-derivations of Lie Algebras and Superalgebras
We study δ-derivations – a construction simultaneously generalizing derivations and centroid. First, we compute δ-derivations of current Lie algebras and of modular Zassenhaus algebra. This enables us to provide examples of Lie algebras having 1 2 -derivations which are divisors of zero, thus answering negatively a question of Filippov. Second, we note that δ-derivations allow, in some circumst...
متن کاملLocally finite basic classical simple Lie superalgebras
In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.
متن کاملOn generalized reduced representations of restricted Lie superalgebras in prime characteristic
Let $mathbb{F}$ be an algebraically closed field of prime characteristic $p>2$ and $(g, [p])$ a finite-dimensional restricted Lie superalgebra over $mathbb{F}$. It is showed that anyfinite-dimensional indecomposable $g$-module is a module for a finite-dimensional quotient of the universal enveloping superalgebra of $g$. These quotient superalgebras are called the generalized reduced enveloping ...
متن کاملModels of Some Simple Modular Lie Superalgebras
Models of the exceptional simple modular Lie superalgebras in characteristic p ≥ 3, that have appeared in the classification due to Bouarroudj, Grozman and Leites [BGLb] of the Lie superalgebras with indecomposable symmetrizable Cartan matrices, are provided. The models relate these exceptional Lie superalgebras to some low dimensional nonassociative algebraic systems. Introduction The finite d...
متن کاملDouble derivations of n-Lie algebras
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
متن کامل